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Abstract  

In this paper, continued from the last paper (fkeda, 1974), two kinds of structurological 
generalizations of  our nonlocal field (i.e., the (x, ~0) field) are considered physico- 
geometrically. One is a Finslerian generalization, where the base field [i.e., the (x) field] 
is extended to a Finslerian field and Weyl's gauge field (i.e., the  electromagnetic 
potential) is physically identified with the directional vector adopted as the internal 
variable in the ordinary nonloeal field theory. Another  is a generalization by which the  
spinor (~) itself is taken as an independent  variable, where some inherent characteristics 
of  ~ are fused into the  spatial structure. The latter is regarded as a "nonlocalization" 
of  the (x) field accomplished by  attaching ~ to each point, in the true sense of  the 
word. Particularly, the  spatial structures o f  these generalized nonlocat fields are described 
in detail. 

1. Introduction 

A certain kind of nonlocal field [viz., the (x, ~) field] has been con- 
structed in a previous paper (Ikeda, 1974) by attaching to each point (x) of 
the base field [viz., the (x) field] the four-component spinor (if) chosen as 
the internal freedom. This nonlocal field has also been regarded as an interaction 
field or a unified field between the (x) and (q/) fields; the former has been 
likened to the gravitational field governed by general relativity, wtfile the 
latter to the spinor field governed by quantum mechanics. And we may say, 
in a certain sense, that this field can be obtained by "nonlocalizing" the (x) 
field and that the (x) field is "nonlocalized" by attaching ff to each point. 
However, in our theory (Ikeda, 1974), the spinor (~) itself is not adopted as 
the independent variable, so that in the strict sense of the word, the (x, ~) 
field cannot be regarded as a nonlocal field obtained by "nonlocalizing" the 
(x) field. Therefore, we shall consider these circumstances in the following. 
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In the ordinary nonlocal field theory (Yukawa, 1950), a certain kind of 
directional vector, say d, is taken as the internal variable associated with each 
point, and both point (x) and directional vector (d) are chosen as the independent 
variables of this field. Therefore, as pointed out by Horvdth (1958) and Takano 
(1968), this field is geometrically grasped by Finsler geometry. From this, it is 
found that when the internal variable is a vectorial quantity and is also chosen 
as an independent variable, this kind of "nonlocalized" field can be considered 
geometrically by Finsler geometry under the premiss that each physical quantity 
is properly homogeneous with respect to the internal variable. Of course, our 
nonlocal field, namely, the (x, $) field, cannot be embedded in Finsler space, 
because the internal variable ($) is not vectorial. Therefore, from a geometrical 
point of view, the (x, ~) field should be considered a nonlocal field in tile 
higher-order space of order M > 2 (or the Kawaguchi space of order M > 2; 
M = i, 2, 3 , . . . ) ,  in which an arc length along a curve x K = xK(t) 
(K = 1, 2, 3 , . . . ,  n; n = 4) is given by the integral 

t~ 

s= ~ F(xK,x  (1)K . . . .  , x ( M ) ~ ) d t  (1.I) 
tl 

where x(~) K = daxK/dt a (a = 1,2 . . . .  ,31), and t is an arbitrary parameter. 
And F is called the fundamental function, which, of course, must satisfy some 
homogeneity conditions in order that the arc length may be invariant under 
any parameter transformation (Kawaguchi, 1962). It should be noticed here 
that Finsler space is the higher-order space of order 1. 

Now, as has often been pointed out (Horvdth, 1950, 1958; Takano, 1968), 
the physical meaning of the internal variable (d or x(l)) in the Finslerian 
physical field is somewhat arbitrary. Accordingly, since the internal variable 
is vectorial, it may be compared quite physically and heuristically to the 
electromagnetic potential (p) in Weyt's style (i.e., Weyl's gauge field), which 
has been introduced into our field theory (Ikeda, 1974) through Weyl's gauge 
invariance (Weyl, 1918). Therefore, if the base field, i.e., the (x) field, is 
likened to the gravitational field and the (p) field is assumed to be constituted 
by the electromagnetic potential, then a certain kind of unified field [viz., the 
(x, p) field] between the gravitational field [i.e., the (x) field] and the electro- 
magnetic field [i.e., the (p) field] can be considered by means of Finsler 
geometry, as has been actually done by several authors (Horv~th, 1950; 
Horwith und Mo6r, 1952; Lichnerowicz, 1955; Tonnelat, 1965, 1966). 

Conversely, in order to construct a nonlocal field (or a unified field) by 
taking the electromagnetic potential (p) as the independent internal variable 
annexed to each point (x) and to fuse the concept of Weyl's gauge invariance 
into its spatial structure, we cannot help considering such a Finslerian non- 
local field as the (x, p) field. On the other hand, in our nonlocal field theory 
(Ikeda, 1974), Weyl's gauge field 09) is introduced through Weyl's gauge 
invariance a posteriori. Therefore, the electromagnetic potential (p) is not 
fused into the spatial structure of the (x, $)  field. Tiffs is the reason why we 
must consider from the standpoint of structurology a Finslerian generalization 
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of the (x, if) field. And when we want to consider this generalization, we had 
better construct first such a Finslerian nonlocal field as the (x, 19) field and 
consider secondly a further generalized nonlocal field by taking account of 
some "interactions" between the (x, p) and (if) fields, because the (x, ~) 
field itself cannot be considered by Finsler geometry, as mentioned above. 
This Finslerian generalization will be described in Section 2. This generalized 
nonlocal field wilt be called the Ix,/9] field in the following. 

As mentioned above, if the spinor (~) attached to each point as the internal 
variable is chosen as the independent variable, then ff takes formally the 
place of the directional vector appearing in the ordinary nonlocal field theory 
(Yukawa, 1950). By doing so, our nonlocal field, i.e., the (x, ~) field can be 
generalized in a different way, and this generalization is regarded as a "non- 
localization" of the (x) field attained by attaching ~ to each point, in the 
true sense of the word. Of course, since the spinor is obviously nonvectorial, 
this generalized nordocal field, which wiU be named the [x, ~] field in the 
following, cannot be grasped by Finsler geometry. Therefore, it should be 
investigated by means of the theory of higher-order spaces of  order M > 2. 
This generalization will be considered in Section 3. 

Thus, in this paper, two kinds of structurological generalizations of the 
(x, if) field will be considered and particularly, the spatial structures of these 
generalized nonlocal fields (viz., the Ix, p] and Ix, ff] fields) will be des- 
cribed in detail. Besides, some fundamental remarks on the newly introduced 
spin gauge fields will also be made. 

2. A Finslerian Generalization of the (x, t~ ) Field 

First, we shall explain some basic concepts underlying the theory of 
Finsler spaces (Cartan, 1934; Rund, 1959), but we select only those that are 
indispensable to the discussion that follows. In Finsler space, as is obtained 
from (1.1), an arc lengthbetween two points xa = xa (q) and x2 = x2 (t2) 
along a curve x K = x~(t) (K = 1, 2, 3, 4) is given by 

t2 

z= J F(x ~, p~')dt (2.1) 
1:1 

where t is an arbitrary parameter, and x K denote the coordinates of  position 
and p~'(- dxa/dt) the components of directional vector (or the directional 
coordinates), the latter being regarded as the internal degrees of freedom 
attached to each point (x) from a physical point of view. F(x, p) means the 
fundamental function, which is assumed to be positively homogeneous of 
degree 1 in the p. This assumption is necessary because the arc length must 
be invariant under any parameter transformation. Then, the metric tensor is 
defined by 

gx~ = ½ a2F2(x' tg) (2.2) 
~pa~pK 
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which becomes positively homogeneous of degree 0 in the p. Next, the 
absolute differential of an arbitrary vector X K is given by 

D X  ~: = d X  ~ + F~xX ~" dx"  + CCxXXdp 'u (2.3) 

where Fix and C~x are the coefficients of connection. Since the length of 
X K is assumed to be invariant under parallel displacement, the metric 
condition Dgx~ = 0 holds, from which the following relations are obtained: 

~ugx~ = 2F~(~,~) = Fux ~ + Pu~x 
(2.4) 

where 

v = _ _  Oh= = C~hgw, FuXK = PuxgvK' CuX~ ~ axU' ~pu 

At this stage we shall assume, for the sake of simplicity, that 

Cux~: = Cu~x = CxuK (2.5) 

as in the ordinary theory of Finsler spaces (Caftan, 1934; Rund, 1959). 
Therefore, Cu~,K is determined by 

Cux~ = ½ ~hgx~ (2.6) 

which becomes positively homogeneous of degree ( - 1 )  in the P- Then, from 
(2.5) and (2.6), the following relation is obtained: 

Cu~,~:O u = C#xKp x = CuxKp ~ = 0 (2.7) 

In Finsler space, the so-called base connection of p, i.e., 6p, which represents 
the inherent absolute differential of p and connects p (or dp) with x (or dx)  
geometrically, turns out to be equivalent to the absolute differential of P, 
i.e., Dp because of the relation (2.7) (Kawaguchi, 1962). Therefore, (2.3) is 
rewritten as 

D X  ~ = d X  K + f '~ .XXdx  u + C~xX~'6p u (2.8) 

where 

Fux = F ~  - G,  C~,x, Guv = PuLP (2.9) 

From (2.8), the covariant derivatives of X ~ are defined by 
* K ~ K  v x  VuX K=0uX + I u X A  

k v ; , x  ~ = a c x  ~ + c ; x x  (2.10) 

where ~ = a~ - GuU0h. Of course, VugxK = 0 and Vhg~.~ = 0 hold. By the 
way, it should be noticed that, in the following, the internal variable (p) is 
physically identified with the electromagnetic potential (i.e., Weyl's gauge 
field) from the beginning and each physical quantity in the Ix, p] field is 
assumed to be properly homogeneous with respect to p. 
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Now, we shall revert to our nonlocal field, i.e., the (x, ¢) field. As was 
already mentioned in the previous paper (Ikeda, 1974), which will be cited 
as [I] in the following, the metric in the (x, ~)  field is given by 

d o ~ = g x d x X ~  (X= 1,2, 3, 4) (2.11) 

which has close analogy to the metric in "wave geometry" (Mimura and 
Takeno, 1962; Mimura et al., 1967) {cf. (2.6) in [I] }. In (2.11), da ( - g x d x  x) 
denotes the linearized arc length in the (x, ¢) field, and g~ means the matrix 
metric, which is assumed to contain the Dirac matrix 7x {cf. (2.7) in [I] }. 
The metric of the type (2.11) represents the "interaction" between the (x) 
and (~) fields, and it is necessary for us to introduce the metric of this type 
in order to consider a Finslerian generalization of the (x, if) field along our 
own way of thinkdng. That is, in order to carry out our purpose, we must 
first obtain the linearized arc length in the (x, p) field, which, as mentioned 
in section 1, is a Finslerian nonlocal field obtained by attaching the electro- 
magnetic potential (p) to each point (x), and we must secondly define the 
metric in the Ix, p] field by the similar form to (2.11). Concerning the 
former, it has been known (Lichnerowicz, 1955; Tonnelat, 1965, 1966) that 
the trajectories of the charged particles are the geodesics of Finsler space 
families characterized by the elementary interval (i.e., the linearized arc 
length) 

dz = x/"t'a~dx~dx 'x + kpudx u (2.12) 

where k ( -  elm, where e is the charge and m is the mass) is a constant, by which 
every Finsler space is determined relative to every type of particle, and ~/x~ 
denotes the Riemannian metric tensor stipulated by the Dirac matrix 7x as 
follows: 7XK = 7(X7~) = (7~3'~ + 7~7X)/2 {cf. (2.2) in [I] }. Therefore, the 
linearized arc length (dz) in the (x, O) field can be written as 

dz = axdx x, ~x ~ 7x + kpxI  (2.13) 

where dz and o~ x correspond to do and gx, respectively. Consequently, the metric 
in the Ix, p] field is defined by 

dz~k = ~xdxXO (2.14) 

Therefore, we can construct the Ix, p] field through the same procedure as 
has been employed to construct the (x, ¢) field in [I], but in the following, we 
shall only point out some essentially Finslerian features underlying the [x, p] 
field. 

First, since ex functions like the Dirac matrix 7x, the absolute differential 
of it is given by [cf. (2.3)] 

D~x = dax -- I ' ~  a~dx ~ - A~x aKdx u - C~x a~dtt  a - B~x a~dp u (2.15) 

where A~,x and B~x serve as the spin gauge fields in the ordinary theory of 
gauge fields (Yang and Mills, 1954; Utiyama, 1956), which are introduced in 



3 8 2  SATOSHI IKEDA 

order to accomplish invafiance under the (internal) Lorentz transformation 
in the spin space (or the four-dimensional Minkowski space) (Kibble, 1961). 
From this viewpoint, the coefficients of connection P~x and C~x may also 
be regarded as the two kinds of gauge fields which are introduced to achieve 
general covariance under the coordinate transformation (Bregman, 1973; 
Isham et al., 1971 ; Kibble, 1961). Next, the covafiant derivatives ofo: x are 
obtained from (2.8), (2.10), and (2.15) as follows {cf. (4.2) in [I] }: 

* *K *K V~a x = ~ a  x - P~,xa~ - A~xa~ (= 0) 
(2.16) 

Va% = 0aax - C~x~ - Buaa~ (= 0) 

where 

*~ - ~ - ~ ~ ( 2 . 1 7 )  A~,x -A~x  G~ Bvx 

As to 4, since ¢ also depends on x and p in this case, its absolute differential is 
defined by [cf. (2.3) and (2.8)] 

D ~  = d e  - r .  ~ax"  - G C d o "  
(2.18) 

= d ~  - P,~dx*'  - C , ~ , a ~  

where lP~, and C~, mean the spin affine connections (Takano, 1968; Utiyama, 
1956), and we have put 

Pu = Pta - GuVCv (2.19) 

Then, two kinds of covariant derivatives of ff are defined as follows {cf. (4.3) 
in [I] }: 

(2.20) 

By the way, Pu and C u are related to At, x andB~x, respectively, as follows: 

rt,~x - axP v = A~xaK (= ~uax - r~xa~) 
(2.21) 

from which Pu and C u are determined, neglecting arbitrariness, as follows 
{cf. (4.4) in [I] } (Bregman, 1973; Takano, 1968): 

_ 1 ~' nX~ r t ,  - ~ t ~ h g  
C~ - 1o ..XK (2.22) 

- ~ # h ~ n  

where n xK = ~z[ x~K l = (axaK _ aK~x)/2, which may be regarded as the 
Lorentz spin matrix, or the generator of the Lorentz group from another 
viewpoint (Bregman, 1973; Isham et al., 1971 ; Kibble, 1961 ; Utiyama, 1956). 
On the other hand, three kinds of spin curvature tensors can be obtained by 
calculating such commutation relations as YtvVvl 4, VlvVt21 4, and V[~ V~il ~k 
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and the other six kinds of curvature tensors are also introduced through such 
commutation relations as V[v%la7` ,, y[vVM a~,, and Vlb VM%, which, how- 
ever, are omitted here {cf. (4.7) and (4.10) in [I] }. 

Now, we shall pay attention to C,,7`~. In our case, as already mentioned, 
Cu~,K is assumed to be symmetrical with respect to all indices [cf. (2.5)] and 
the relations (2.6) and (2.7) are also assumed. In the [x, p] field, this is 
related to the metric tensor o~aK (-= a(7`a~)) through the metric condition 
V,iaT`K = 0 as follows [cf. (2.6)] : 

CuT`~ = ~i~87`~/2 = 6u(7`aK ) (2.23) 

from which CuXuT̀ is obtained, by contraction of the indices K and X, as follows: 

C~X = % (2.24) 

On the other hand, since Cua * represents the deviation from Riemann space 
[i.e., the (x) field in our case] caused essentially by the electromagnetic 
potential (p), Horwith (1950) proposed physically the following relation: 

1 S CuT`~ = - ~(7 u 7̀ ~ + 77`S~ u + V~SuT`) (2.25) 

where Sa~ denotes the symmetrized stress-energy tensor. Therefore, from 
(2.25), C ~  is given by, by virtue of S/,7` = 0, 

C~7  ̀= - VaS~ a (2.26) 

Then, comparing (2.24) with (2.26), we can put 

% = -  gaSh 7  ̀ (2.27) 

which represents the density of the Lorentz force (Horv~th, 1950; Horvgth 
und Moor, 1952). 

Finally, we shall obtain the fundamental equation for ~ by taking account 
of the parallel displacement of the metric dz~.  This procedure has been used 
in wave geometry (Mimura & Takeno, 1962; blimura etal., 1967). In our 
case, since the electromagnetic potential (p) (i.e., Weyl's gauge field) is already 
fused into the spatial structure of the (x, O) field, this parallel displacement 
implies a generalization of Weyl's gauge invariance with respect to the metric 
(dz~). Now, if the vector ~x which constitutes the metric (or the gauge) by 
aT`~x~ at the point (x) is displaced in parallel from the point (x) to its neigh- 
boring point (x +dx), then the change of (ax~7`~) is assumed to be given by 

d(0~7`~7`~) = (~,udx u + ~,dSpUXo~a~a~) (2.28) 

where ~u and ~ mean arbitrary 4 x 4 matrices {cf. (3.3) and (3.4) in [I] }. 
Then, taking account of (2.8), (2.15), and (2.16), we can obtain two kinds 
of field equations in the Ix, p] field as follows: 

~a(au 4) + ( a . % ) ,  - ( a ~ r ~ D ,  = :~u~x$ 
(2.29) 
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which, by use of(2.16), (2.20), and (2.21), are also rewritten as 

a x V ~  + P ~ x f  = E~°~xf 
(2.30) 

a~,v~ f + c~axf  = 2~axf 

Here, if we multiply (2.30) by a x and divide it by axx, where we do not sum 
for X, then we can obtain the fundamental equations for f in such formulas 

t t ! ! as Vgf  = E , f  and V6f  = E~ff, where E# and E6 stand for arbitrary 4 x 4 
matrices. These equations have been adopted in wave geometry. On the 
other hand, if we contract (2.30) over the indices X and/1, we can obtain the 
fundamental equations of  the form a"V,f f  - ~ f  = 0 and a~V6ff - X~k = 0, 
where ~ and X are certain constants. These equations should be regarded as 
the generalized Dirac equations (Ikeda, 1974; Takano, 1968; Yukawa, 1950). 

At any rate, we may say that this kind of Finslerian nonlocal field can 
bring out the "anisotropy" of the physical field caused by the internal 
variable in full relief (Horwith, 1958). And from this viewpoint, it may be 
expected that this "anisotropy" can be related to some kinds of broken 
symmetries within the scope of the theory of gauge fields (Bregman, 1973; 
Horv~th, 1958; Isham et al., 1971 ; Kibble, 1961 ; Utiyama, 1956; Yang and 
Mills, 1954). Therefore, in future, we should also consider this problem by 
focusing particular attention on the spin gauge fields and some "'interactions" 
between the (x, p) and ( f )  fields. 

3. On a "Nonlocalization" o f  the (x, f )  Field 

In this section, we shall consider a generalization of the (x, f )  field by 
taking the spinor ( f )  as an independent variable. Then, both the point x and 
the spinor f are taken as tile independent variables in this generalized non- 
local field (i.e., the [x, f ]  field). And as already mentioned in section 1, the 
Ix, f ]  field cannot be grasped by Finsler geometry, so that some generaliza- 
tion of the (x, p) field treated in the previous section must be attempted, as 
will be done in the following. 

First, since the metric in the [x, f ]  field should embody the interaction 
between the (x) and ( f )  fields, it should be given in the same form as (2.11). 
However, in this case, it is desirable to show explicitly that the metric depends 
on x and 4, so that we choose Gx =gaff  as the matrix metric which can play 
the same role asgx and ax do. Then, the metric tensor in the Ix, f ]  field is 
defined by Gx~ = G(xG~). 

Next, by taking dx"  and d~ as the independent (line) elements, the 
absolute differentM of an arbitrary vector X x is given by 

D X  'c = d X  '~ + ~_~xXXdx u + Hx•XXdf  (3.1) 

~K and Hx ~ denote the coefficients of connection in the Ix, f ]  field where -ux 
[cf. (2.3)]. As to f ,  its intrinsic absolute differential should be given by the 
base connection (i.e., 6 f )  from a purely geometrical viewpoint, and in this 
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case, 6 4 cannot be identified wi thD4 (Kawaguchi, 1962). Therefore, in 
general, we shaU define 6~ in the form 

~t~ = d 4  - ® . 4 d x "  - C 4 d 4  (3.2) 

where O u and C mean the spin afFme connections [cf. (2.18)]. Here, for the 
sake of simplicity, we shall also assume the homogeneity condition about C, 
i.e., C4 = 0 corresponding to (2.7). Then, (3.2) is reduced to 

5 4  = d 4  - Ou4dxU = ( V u 4 ) d x  ~ (3.3) 

where the covariant derivative of 4 (i.e., Vu~b ) is defined by [cf. (2.20)] 

V.4 = 3u4 - 0 . 4  (3.4) 

Now, substituting (3.3) into (3.1), we can rewrite (3.1) as 

D X  K = d X  ~ + 72~xXXdxU +HxKXX~ 4 
(3.5) 

= ( v . x  ~) d ~  + (VX'~)a~ 

where 

~UX "uX + Hf f  (®u 4) (3.6) 

[cf. (2.9)], and the covariant derivatives o f X  K are defined by 
~ v X  Vu XK = "~u X "  + "'ux ~ , VX~ = ~XK + Hx  KXx "au - au + (Ou4)~' 

(3.7) 
where 0 ( -  0/04) means the partial differentiation with respect to a com- 
ponent of the spinor (4) [cf. (2.t0)].  

Now, we shall proceed to the connection of G x. Its absolute differential 
should be given by 

DG~. = dG~. - , ~  G ~dx u - M ~  G ~dx u - Hx~ G Kd 4 - N f f  G ~dt~ (3.8) 

where.Mix and N~ K mean the spin gauge fields [cf. (2.15)], which may be 
related to the spin affine connections 0 u and C, respectively, as follows 
[cf. (2.21)1 : 

M ~ x a ~  = e . G ~  - axe. 
(3.9) 

NxK G~ = CGx - Gx C 

In the same way as (2.16), the covariant derivatives of G x are defined by 

VuG x = ~gG x ~ --~ 

VGx = 0Gx - HxKGK - N f f G K  

where we have put 

(= 0) 
(3.10) 

(=o) 

(3.11) 

[cf. (2.17)]. Of course, we may put VuGx~ = 0 and 7Gx~ = 0. At this stage, 
if such relations as VuGx~ = ~b~G~K and V£TxK = ~bGx~ are taken into account, 
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then two kinds of gauge fields in Weyt's style can be introduced into the Ix, tp] 
field (Ikeda, 1974; Weyl, 1918). By the way, if the base field, i.e., the (x) 
field is generalized to a Finslerian field by taking further the electromagnetic 
potential Co) as an independent variable, as has been done in the previous 
section, then (3.1)is extended to 

D X  • = dX" + ~uxX dx~ H~f X~d~ (3.12) 

where E~x is the coefficient of connection coping with C ~  introduced by 
(2.3). Then, for the sake of simplicity, assuming the same homogeneity 
condition as (2.7) and HxKp '~ = 0 and identifying the base connection of p 
(i.e., 8p) withDp derived from (3.12), we can obtain, for example, the base 
connection of t~ [cf. (3.3)] and the covariant derivatives of ~ [cf. (3.4)], 
respectively, as follows [cf. (2.18)and (2.20)]: 

6 ~ = d$ - ®, fg dx # - g2 u $dp u 
(3.13) 

= d ~  - ~ . ~  dx  u - ~ 2 u ~ 6 # '  

where ~2 u denotes another spin affine connection coping with C u and 
Ou = O,  - Z~xpX(g2v~0), and 

(3.14) 

Finally, we shall obtain the fundamental equation for ~ in the Ix, ~] 
field with the aid of the parallel displacement of the metric (G x dx"). Now, 
when the.vector ~ constituting the metric by Gx~ n at the point (x) is dis- 
placed in parallel from the point (x) to its neighboring point (x + dx), the 
change of (Gx~ x) is assumed to be given by 

d(a~,~ x) = (11 u dxU)(ax~ ~ ) (3.15) 

where IIt, denotes an arbitrary 4 x 4 matrix [cf. (2.28)]. Of course, (3.15) 
represents a generalization of Weyl's gauge invariance (Weyl, 1918). Calcu- 
lating the left-hand side of (3.15) with the use of (3.3), (3.5), (3.8), and 
(3.10), we can obtain from (3.15) 

or (3.16) 

Then, after some manipulation, this equation can be rectified in the form 

gK Vt,~ = augK (3.17) 

where A u stands for an arbitrary 1 x 4 matrix which depends suitably on g~,, 
C, and O u. Therefore, from (3.17), two different types of the fundamental 
equation for if, i.e., guff = A~ (=g~Axug,Jg(~gK) andgUVu~ = A (=-AugU) 
can be obtained, as has already been mentioned in section 2. 
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Thus, the spatial structure of  the [x, ¢]  field has been made clear to 
some extent  and some inherent characteristics of  the spinor ~ have been 
fused into the spatial structure. Therefore, in future, we should investigate 
some physical features underlying this generalized nonlocal field by  making 
reference to the nonlocal field theory (Yukawa, 1950; Takano, 1968) and 
the Finslerian unified field theory (Horv~th, 1950; Horv~th und Mo6r, 1952; 
Lictmerowicz, 1955; Tonnelat,  1965, 1966). 
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